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B TpéxmepHOil mocTaHOBKE MpeAIaracTcs aHaIUTUUYECKUH METOJ| UCCIIEAOBAaHUs PACIPOCTPAHEHHS MIOCKOH
YIPYroil BOJHBI 4€pe3 CUCTEMY IPOU3BOJBHOIO KOHEYHOTO YHUCIA TNapajjielbHBIX JBOSKONEPHOANYECKHX
UJICHTUYHBIX MAacCCHBOB TpEUIMH. B yclOBUAX HU3KOYAaCTOTHOIO peXuMa 3ajada CBOAUTCS K CHCTEMe
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TIPOXOXKJICHHS.
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In a three-dimensional (3-D) context an analytical approach is proposed to study the propagation of elastic
plane wave through a system of any finite number of parallel doubly-periodic identical gratings of coplanar cracks.
In the low frequency range the problem is reduced to a system of integral equations holding over the crack of a
chosen elementary rectangular cell of the grating. The semi-analytical method previously introduced for scalar and
elastic 2-D problems gives an explicit representations for the wave field and the scattering parameters - the
reflection and transmission coefficients.

Introduction

The investigation of the scattering phenomena for waves propagating through media
containing gratings of periodic geometry is nowadays a subject of great interest in many
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fields of engineering science, particularly - with impressive mechanical, electromagnetic
and acoustical applications. Different numerical methods have been applied in the 2-D
problems for periodic apertures [1-5]. Introducing various approximations, valid in the one-
mode regime, the authors obtain some analytical solutions and develop respective formulas
for the reflection and transmission coefficients in an explicit form.

The papers [6-9] provide explicit analytical formulas for reflection and transmission
coefficients in the one-mode case for scalar acoustic or electromagnetic waves penetrating
through doubly and triple-periodic arrays of arbitrary-shaped apertures and volumetric
obstacles. In the two-dimensional in-plane problems on wave propagation through a
periodic array of screens in elastic solids the works [10,11] can be cited for a single-
periodic system of cracks and the works [12,13] -- for the doubly-periodic geometry.

The present work continues to study the 3-D elastic case for several doubly periodic
arrays of coplanar cracks of arbitrary configuration, parallel to each other. The discussion is
restricted to rectangular cracks and any finite number of parallel identical arrays. The topic
of the problem is connected with [14,15] and some other published papers, but the
mathematical technique is different. The wave process is harmonic in time, and all physical

quantities contain the factor gt , which is further omitted, for the sake of brevity. Like in
some previous works, (a) only one-mode propagation with normal incidence is considered
(ak2 ,Ck2 < 1), where k2 is the wave number of the transverse wave, 2a;2C are the
periods of the grating; (b) the vertical cracked planes are sufficiently distant from each
other, so that the ratios D/a, D/C are comparatively large, where D is the distance

between the neighbor arrays. In frames of the proposed approach, the problem is reduced to
a dual hyper-singular integral equation, whose semi-analytical solution permits an explicit-
form representation for the reflection and transmission coefficients.

The problem under consideration is connected with the theory and the practice of the so-
called «acoustic metamaterials», which may possess a property of acoustic filter with a
cutoff of the propagating wave over certain frequency intervals, due to their specific
internal structure. This phenomenon for the elastic triple-periodic structures was recently
discovered experimentally, being presented in [16]. Some fundamental aspects of the
acoustic metamaterials are discussed, among many other publications, in [17-19].

Formulation of the problem and reducing to an integral equation

Let us consider a 3-D medium, which consists of M infinite planes, located at
x=0,D,2D.,...(M —1)D, each containing a two-dimensional infinite periodic array of
co-planar cracks, symmetric with respect to axes y and z. The distance between the systems
of cracks, forming the third period is D. The period of the grating along axis Y is 2a, and

i(k X—ot
along axis Z is 2C. If we study the incidence of the longitudinal plane wave e'( ! )

upon the positive direction of axis X, then the problem is obviously equivalent (due to a
symmetry) to a single waveguide of width 2@ along axis Y and 2C along axis Z, (see
Fig.1). Let us assume that a longitudinal plane wave of the form

0 =€, w, =0, (1=1,2.3), Ap+k26=0, Ay+Ky=0, ()

is entering from — o0, generating the scattered fields in front of the first array (X <0),

36



inside the structure ((S—1)D <Xx<8D;s=1,...M —1) and behind the last one

(X>(M —1)D) . Then the Lame potentials, satisfying the Helmholtz equations in the

respective domain, can be represented as the Fourier trigonometric series expansions along
Y and Z variables:

x<0: ¢ =€ +Re™ 4 Y A]jeq“ixcos(qqy)cos(CjZ),
n+j>0

=Y B, e sin ( any)sm(c Z)

n+j>0 (2a)
z g cos ahy)sm(c Z),

n+j>0

=> B, en” sin ( any)cos(c Z)

n+j>0

(s-1)D<x<sD; s=1,.M —1:
0° = €9 + F2 cosk [x— (s—1)D]+ H¢ cosk (x— sD) +
+Z{chhqn][x (s=1)D]+ Hych g, (x—sD)} cos(a,y)cos (¢ z),

n+j>0

o0

wi = 3 {Gyeh 1y DX~(s=1)D]+ Pich 1 (x~SD)} sin (a,y)sin(c,2). (20

n+j>0
v = i {Vissh 1 [x— (s-1)D]+Qjsh r, (x—sD)} cos(a, y)sin(c; ),
n+j>0
v = i {Wgsh 1, [x—(s—1)D]+Y;sh r, (x—sD)}sin(a,y)cos(c;z),
n+j>0
x>(M -1)D:
7 MDD] | 5o o DEMDDT v eos(c2),
n+j>0
v, = Z Drlu.efr”j[x_(lvI -b] sin(any)sin(cj Z),
o x~(M—-1)D 29
V= Z Drfjefr”i[ ( ) ]cos(any)sin(cj Z)
n+j>0
y; =Y Dye WX-(M=D)D] sin(a,y) cos(c Z),
n+j>0
where
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Oy =& +Cj -k, ry=ya +¢ -k, ‘%_za G =—-

c
Here all capital letters are some unknown constants, K,K, are the longitudinal and the

transverse wave numbers: K =@/ C, and k,=w/c,, C, and C are the longitudinal
and the transverse wave speeds in the material (C, > C,), R and T are the reflection and

the transmission coefficients, respectively.

Let us restrict the consideration to the one-mode case: 0 < kza <T,
0<kc<m, then ,>0,r;>0 for all nN+j=12,.... For
n=j=0,0q, =-iK, and r,, =—ik,, according to the radiation condition. Besides, we
assume that the planes, containing arrays of cracks, are sufficiently distant from each other.

The components of the stress tensor Oy>0x 20y, and the displacement field

u,,u,,u, can be expressed in terms of the Lame wave potentials in standard form. The

potentials (Y, Z) should be considered with the additional condition:

0 0 0
AL PR
ox oy oz

Accepting the continuity of the displacement field U,,U,,U, outside crack's

=0. (3)

domain, we introduce the following new unknown functions

9°=(9:(¥,2), 95(¥,2), 9;(¥,2)), $=1,..M as follows:
o119 (%,2), (¥,2) e crack,

e (4a)
0’ (ya Z) & crack
x=(s=1)D: u' —u’= 9°(¥,2), (¥2) € crack, b
- 0, (Y, Z) & crack
M
k
x=(M-1)D: HM—l _gr _ g (Y, 2), (Y,2) e crack, o

0, (Y, 2) ¢ crack

whose physical meaning is a relative displacement of the left and the right crack's faces
along respective Cartesian direction.

Now Lame expressions for the components of the displacement field together with
Egs.(4) can be used to represent expressions for all constants appeared in potentials (1),(2)

in terms of §.(Y,2). 9;(Y,2), 9;(¥,2), $=1,...M. It can be proved, by analogy to

the simpler 2d problem [11], that, due to the natural geometric symmetry of the problem,
the relative tangential shifts between crack’s faces are identically trivial:

g)S/(ya Z)an g;(ya Z)EO, S=1,...M. (5)
Then the orthogonality of the trigonometric functions reduces Eqs. (4) to the following

38



relations:

(Aﬂ + Hnj Sh(qnj D))qnj + (ng +Ynlj Sh(rnj D))a, -

25,

- [g,(n,¢)cos(a,n)cos(c;¢) dndg, (6a)
ac S
(FnT_l + H:J )Sh(qnj D)qnj + (Wn?_] +Yn]§)Sh(rnj D)an -

20 .
% [g;(n.¢)cos(an)cos(c,¢)dnds,  (6b)
ac S

_(Bﬁj +Qr11j sh(r, D))c; =

s-1 s _
Wi +an )Sh(rnj D)Cj -

(Fn:vl _]Sh(qnj D) + an )qnj + (an:vI _]Sh(rnj D) N ng )an B

28,
_ n;\"*lsh(l’nj D)- Drfj )c, = ac] J'g)':/I (n,g)cos(ann)cos(cjQ)dnd@, (6C)
)
-ik R—H}k sin(k D) = — [ g} (n.0)dndt, (72)
4ac 5
cip o 1 ¢
—F5'k sin(k D) — Hgk, sin(k, D) =— [ g5 (n,§)dndg, (7b)
48.CSO
ke MDD _ i sin(i D)~ ik T = —— [ g2 (n,C)endl, (70)
4ac 5

where

1/2, (n,j)=1,2...
5. =41/4, (n=0,j=1,2..):(j=0,n=1,2...).

n

The boundary conditions for the stress and the displacement fields over planes
X=(s—-1)D,s=1,...,M are as follows:

o, =c,, o' =c, on'=cl, (Y,2) e crack, (8a)
o, .=c.=0,065'=c3 =0, c"" =6 =0, (y,2) e crack, (8b)
W'l =u, u =y, wlT =y, (Y, 2) e crack, (80)

where relations (8a) mean the continuity of the stress field and relations (8c) the continuity
of the displacements, all -- outside the crack. The conditions for the stress 0,>0x and the

displacement fields U, ,U, have analogous forms. Now, by substituting all the constants

into the boundary conditions (8) of the stress-free faces of the cracks for
x=0,D,2D,...M -1)D, (Y,2)€S,, with the use of the basic assumption
D/a>>1,D/c>>1, after some routine transformations (see Appendix A in [26]) one
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obtains the following main system of integral equations ((Y, Z)€S)) :

|kD

R 1 K(y=m.z%)

" jgx(n,@«{gikl o ande
|k2D |kl(M I)D

j Q:n.0NdC +...+ S — [gl nO)dndC =1, (%)
9y

j g; (n,§)dnd¢g +

8ac K,

ikD
K(y_na Z_C)}dndc_i_

k;

ek j g;(n, C)dndC+— j gxm,@{

eile ik, (M 2)D

[gmodnde+...+ «0
1'%

jgx (m.Qdndg=€"", (%)

+ _—
8acik 8acik,

e|k2D |k1D
jg (n.&)dnd c+

j g; (n,)dndg +— j g:(n,

8aci

|k(|\/| -3)D 2D

_W}dndgﬁg—hx (n,Q)dndl=e""", ©0)
. acik

dq(M-)D «(M-2)D

= jg (n.§)dndg + eTjgx(n Odndg +...+

- K(y_n’Z_C) _
- S{g '(n,Q)dndg +— jgx (™, C){ o ande

:eikl(M—l)D 9d)

2

where K(Y,2) and R; (the Rayleigh function) are:

K(%,2)= 38, T cos(ay)eos(c, 2R, ~[2(& +6)~KT —dr,q & +6). (10)

n+j>0 i

Let us consider the auxiliary integral equation:

OK(y=m,z0)dndC =1,  (y.2)S,. (11)

It is obvious that
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eile eik12D eikl(M—l)D

0.(%:2) = (8ac1:ik1 I Sadk Y Tsack U T sagk M
~Dk7h(y, 2), (12a)
D D «(M—2)D
0.0y Z)z(szcikl % +8a(1:ik1 J2+8eacikl . +"'+68Tiklj“” B
~e"P)chiy, 2), (12b)
gi(y,2)=(eik12.D L+ eikl.D LIPS, M v
8acik, 8acik, 8acik, 8acik,
-52P)eh(y, 2), (12¢)
ik(M-1)D eikl(M -2) Dm eile 1
v (y,2)=( Sacik J, + Sacik J2+...+mJM_l+mJM -
M DPeny 2, 9 = [glmOdnde, j=1.2...M. (12)

S

By integrating Eqs. (12) over SO, one obtains the system of linear algebraic equations for
the unknown quantities J;. With respect to jj = Jj/8aci K, ]=1,2,..,M itappears
with the following matrix

o B > ... M
Boa B .. | B
BB o . | B, (13)

where o =1—8acik /k’H p=eiP H= jh(n,z;)dndz;.
$

Therefore, once the auxiliary equation (11) and the system with the matrix (13) are
solved, all necessary characteristics of the wave field can be found. In particular, the
reflection and the transmission coefficients are defined as follows (see [26]):

J, J, eile _Jdu eikl(M—l)D

~ 8acik, 8acik, " 8acik,

(14a8)

41



_J MDD wk(M=2D - dw (MDD
gacik, 8acik, Bacikq

It can be shown that the natural energetic condition | R|* +| T |*=1 is satisfied

for any real-valued quantity H .
Numerical solution of the integral equation

To be more specific, let us restrict the consideration by the case of equal periods of
the grating: @ = C. Then the basic dual integral equation (14) can be rewritten in the

following dimensionless form (C=a=1):

1 k> — k2

— | h(n, @, (y=, 221 23/2dd:1’

i Q{ o Wz o] } e

q)r(y> Z):_z(kzz _klz)lr(y’ Z)+ Kr(ya Z), (ya Z)ES) (15)

In order to provide the stability of the numerical treatment, in the performed numerical
experiments there is applied a discrete quadrature formulae, for 2-D hyper-singular kernels,
known as a "method of discrete vortices" [20]. It is proved in [20] that with a discretization

of Eq. (11) a stable treatment of the hyper-singular kernel of the type 1/r 3/2, where
r> = (y=)>Hz=¢)>, can be attained if one chooses two different meshes of nodes for
the «internal» variables 77, and the «external» variables Y, 2. More precisely, if one
subdivides the interval of integration (—b,b) to N, equal small sub-intervals and the
interval (—d,d) to N, equal sub-intervals, and if the «internal» nodes over each

Cartesian coordinate Y and Z are chosen just at the ends of the respective small sub-

intervals, then the «external» nodes should be chosen every time at the middle points
between two neighbor «internal» nodes:

N = -b+Kke,, y, =-bHl-1/2)e, g, =2b/ N,

(p=-d+me,, z,=-dHp-05g, & =2d/N,, (16)
k=0,..,N,, I=1,..,N, m=0,..N,, p=L...,N,.

With such a treatment the discretization of Eq. (15) implies:

LZ Z h(nk’qm){glgzq)r (y|_T]k, Zp—qm) +

2 k,m=1

. k22 _ k12 Tj‘k C.!jm 1

2n 2y -z, - O]
Further, it is proved in [20,21] that integration of the hyper-singular kernels in Eq. (17) may
be performed, by using standard antiderivatives, in the same way like in the case of usual
continuous functions. Thus, using tabulated integrals, see [22], as a result, Eq. (17) is
reduced to the following system of linear algebraic equations in the discrete form:

—dndg}=1. (17)
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LS M ) (68D, (Y102, -G +

2 k,m=1
-k JOY D) HE 2, ) . JO =Y + G —2,)
2n I (A M~ Y)Cni—2,)

X JOGYD) 2, M%) HE s — 2,)’
M — ¥ )(Cn—Z,) M = Y Gt — Zp)

It is proved in [20] that the applied method of discrete vortices automatically provides
the required condition prescribing that crack's opening should vanish when approaching its

=1 (18)

outer boundary, the perimeter of domain S) In the initial continuous form, see Egs. (9)

and (11), this follows from the qualitative properties of respective hyper-singular equations,
see [21]. In the discrete form this is provided by the applied numerical technique, see [20].
Some examples of the calculations are presented in figures 2 - 4, all for the quadratic

unit cell (&= C), for a particular elastic material Cp/ C, =1.870 . All the Figures are the

behaviors of the transmission coefficient versus frequency parameter. For fixed D and
M the different lines are related to different crack's sizes (Fig. 2). The behavior of the
coefficient with all the parameters for Fig. 2, except M (here M is twice more), is

illustrated on Fig. 3. Fig. 4 demonstrates the comparison of the behavior when M takes a
pair of values.

Numerical results and physical conclusions

The obtained results are analyzed on the subject of the cutoff properties of the acoustic
metamaterials possessing an internal periodic geometric structure, as described in the
Introduction.

In the numerical analysis of the qualitative properties of the considered geometry of the
cracks in the framework of the proposed here method will do the main emphasis on the
physical properties of the system as an acoustic filter. Investigate the possibility of using
the considered accurate artificial grating of cracks are made in elastic material, for the
organization of cutoff frequency ranges with the passage of the plane longitudinal wave.
Use for this purpose the exact calculation according to the obtained formulas (14), based on
the accurate numerical solution of auxiliary integral equation (15) and calculate the value

H according to the formula (13). Obviously, cutoff frequency range occurs when the value
of the transmission coefficient | T (8K, / 1) | approaching zero.

First of all, note that the cutoff frequency interval in the upper part of the single-mode
frequency range 0 < ak2 /m<1 1is achieved for any geometrical and physical

parameters, example of this type of dependence on frequency is shown in Fig.2. Obviously,
in both cases almost complete locking of the wave channel is achieved in the frequency

range / > 0.85. However, from a practical point of view, the frequency filters are
g p p q Yy

more effective, when they allow to achieve the filtering of the waves not only in the upper
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part of one mode frequency range or for the extremely large values of frequencies in this
mode.
Detailed analysis shows that almost any desired frequency interval with a locking wave

channel is achievable by control of the parameters of the relative size of cracks b/a, the
number of vertical arrays M and the distance between the adjacent planes with arrays
D/a. 1t turns out that the function | T(l/a)| is smooth enough and the dependence on
parameters M and D/a is more complex, where the intervals of increase and decrease

follow each other. In this regard, the control wave process by changing the crack length is
more effective.

It can be seen From Fig.2, where M =5, b/a=0.5 the frequency locking interval
0.37<ak, /m<0.54 and at b/a=0.7 the appropriate interval shifts to the left,
reaching 0.31<ak, /m<0.51. With increasing of vertical arrays (M =10) the
behavior of function | T(@K, / )| either demonstrates the property of acoustic filters

which attained by choosing of the relative size of cracks b/a (Fig.3).

A detailed study shows that with the increase in the number of vertical arrays M ,
while maintaining the values of all other parameters, the cutoff frequency range is virtually
unchanged. The closing process becomes more pronounced in the sense that a value in this
range becomes almost constant and equal to zero and the corresponding curve is almost flat.
The value of the transmission coefficient is almost zero uniformly on the whole cutoff
interval. This property is demonstrated in Fig.4, where locking in the frequency interval

0.44 < ak, / m<0.64 for the case of M =10 is more pronounced than for the case

M = 5. It should be noted that the recent publications of the authors were devoted to a
two-dimensional problem for the two parallel arrays of cracks [25] and a three-dimensional
problem of wave propagation through a doubly periodic array of cracks [26].

Appendix A. Efficient treatment of the kernel

Regarding the kernel K(Y,Z) in Eq.(11), first of all, we notice that
L, = -2(k; —k)(@ + Cjz)m, (N, j) — oo. Hence, the sum defining the kernel can

be transformed as follows:

K(y, 2 2(K k) 3" 8,, (a2 +6})" cos(a, y)cos(C;2) +

n+j>0
+ Z 8y[Ly +2(k; —k*)(@; +¢;)"*]cos(a, y)cos(c; 2),
n+j>0
K(y,Z)=—2(k22—klz)l(y,z)+Kr(y’z), (Al)

where the second term in the kernel K, is a certain regular function. The first one itself

consists of a regular and a singular part: 1(Yy,2)=1,(Y,2)+1,(Y,2). To be more

specific, we further demonstrate the mathematical transformations in the particular case:
a=C. Let us introduce the dimensionless variables Y =Yy/a,Z=2Z/C and then,
omitting tildes, one rewrites:
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E 1(y,2)= D 8,(n* + j*)"* cos(nny)cos(njz) = iSnOncos(nny) +

W0 =

+Z§OJ j cos(mjz) + ZZSW (n* + j*)"* cos(mny)cos(njz) = (A2)
=5

= —Zn cos(Tny) ——Z jcos(mjz) +— ZZ(n + j%)"? cos(nny)cos(mjz) .

The last double sum can be evaluated by usmgn tl(iejr I1’01sson formula:

Zp(n) PO )+ P(0) +23 PQmn), (A3)

where in the problem athand: 1

p(t) = (t> + j*)"* cos(ty),  P(u)= Tp(t)cos(ut)dt. (A4)

2

By taking the generalized value of the divergent integral in P(U), see for example [21],

one obtains for | >1:

P) = llmfe “ p(t) cos(ut)dt =

e—>+0

{Klu [my+ub), Ki(j[my-u |)} (A5)
|y +ul |y —ul

where some tabulated integrals have been used [22]. Here in Eq. (A5) K (§) is

Macdonald's function [23]. Thus, the sum over N in Eq. (A2) takes the form ( | >1):

. . i JK (] K(j|2 K(j|2

S 4) 2cos(mnyy-d -] Uy sy K 2ememyD | KA 280y | )

n=0 2 TE|y| n=1 |2Tm+7ty| |2TCn T[y|

Finally, | (Y, Z) in Eq. (A2) can be rewritten as follows:

a 1 & 1 =, . .
—=1(y,2) =) ncos(nny) —— > JK,(J| y[)cos(njz) —
T 4; 2Tf|y|jzl: 1

_l Z K,(J [2mn+my |) n K, (J|2mtn—my|) j cos(mjz). (A7)
254 |2nn+ny]| |2nn—my |

The first series in the first line in Eq. (A7) can be calculated by using the generalized value
of the following tabulated series, see [22]:

Zn cos(mny) = lim Ze “"ncos(nny) = — ! (A8)

n=1 e407 4sin2(7ty/ 2)
The second series in the first line in Eq. (A7) can also be calculated explicitly, by its
transformation to a tabulated series, see [22]:

SUIK, (jn| y[)cos(njz) - —1%ir<o(jn| y ) cos(njz) =

i1 oy i
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18 1 ly| & 1 1
__%E{W-FC-FIHT-‘_ Z|: j|

2 . 2 AT
Sy +2)j+2)7] 2]
< 1 1]

+;Ly%m—zﬂ” 21}}

1 |yl 1 < |yl |yl
=+ + , A9
2n{<y2 c27 1yl ;Ly%(zhz)z Py }} )

where C=0.5772157 is Euler's constant [23].

Therefore, one obtains for the kernel of the basic dual integral equation (11)
— 2 2
K(Y,2) =K, (¥,2) = 2(k; kDI, (Y, 2 + 1 (¥, 2], (A10)
where the regular and the singular parts are, respectively:

a 1 & 1 1
T 47122{ }

j=1 [y2 + (2] + 2)2 ]3/2 + [y2+(2j_z)2 ]3/2
1 ijcos(njz){K‘(j 2mn+ny)  K( j(2nn—ny|)}+
2

e | 2N+ 1y | | 2nn—my |
1 1

a 1
B : A All
47 y? 16sin’(ny/2) T A’ (Y12 ) (A1)

One can see that the obtained singular behavior of the kernel for small arguments
contains a 2D hyper-singular term 1/(y* +z%)"*

theory for cracks in unbounded media [24].

, well known in the linear elasticity

Figure 1: Propagation of the incident wave through a triple periodic array of
cracks.
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Figure 2: Transmission coefficient versus frequency parameter: b=d,a=c=1,
D/a=4, M =5, line 1 —b/a=0.5, line 2 —b/a=0.7
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Figure 3: Transmission coefficient versus frequency parameter: b=d,a=c=1,
D/a=4,M =10, line 1 —b/a=0.5, line 2 -b/a=0.7
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Figure 4: Transmission coefficient versus frequency parameter: b=d=0.7,a=c
=1,D/a=3,line1-M=5,line2-M=10
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